Carbonic anhydrase: in the driver's seat for bicarbonate transport.
نویسندگان
چکیده
Carbonic anhydrases are a widely expressed family of enzymes that catalyze the reversible reaction: CO(2) + H(2)O <=> HCO(3)(-) + H(+). These enzymes therefore both produce HCO(3)(-) for transport across membranes and consume HCO(3)(-) that has been transported across membranes. Thus these enzymes could be expected to have a key role in driving the transport of HCO(3)(-) across cells and epithelial layers. Plasma membrane anion exchange proteins (AE) transport chloride and bicarbonate across most mammalian membranes in a one-for-one exchange reaction and act as a model for our understanding of HCO(3)(-) transport processes. Recently it was shown that AE1, found in erythrocytes and kidney, binds carbonic anhydrase II (CAII) via the cytosolic C-terminal tail of AE1. To examine the physiological consequences of the interaction between CAII and AE1, we characterized Cl(-)/HCO(3)(-) exchange activity in transfected HEK293 cells. Treatment of AE1-transfected cells with acetazolamide, a CAII inhibitor, almost fully inhibited anion exchange activity, indicating that endogenous CAII activity is essential for transport. Further experiments to examine the role of the AE1/CAII interaction will include measurements of the transport activity of AE1 following mutation of the CAII binding site. In a second approach a functionally inactive CA mutant, V143Y, will be co-expressed with AE1 in HEK293 cells. Since over expression of V143Y CAII would displace endogenous wild-type CAII from AE1, a loss of transport activity would be observed if binding to the AE1 C-terminus is required for transport.
منابع مشابه
Gas contaminants capturing by gamma-carbonic anhydrase catalyst: A quantum chemical approach
In this paper, we used quantum chemical approach to shed light on the catalytic mechanism of γ-carbonic anhydrase (γ-CA) to convert carbon dioxide to bicarbonate ion. Density functional theory (DFT) using B3LYP and UB3LYP functional and three split-valance including 6-31G*, 6-311G** and 6-311++G** basis sets were used to calculate the details of electronic structure and electronic energy of act...
متن کاملGas contaminants capturing by gamma-carbonic anhydrase catalyst: A quantum chemical approach
In this paper, we used quantum chemical approach to shed light on the catalytic mechanism of γ-carbonic anhydrase (γ-CA) to convert carbon dioxide to bicarbonate ion. Density functional theory (DFT) using B3LYP and UB3LYP functional and three split-valance including 6-31G*, 6-311G** and 6-311++G** basis sets were used to calculate the details of electronic structure and electronic energy of act...
متن کاملThe functional and physical relationship between the DRA bicarbonate transporter and carbonic anhydrase II.
COOH-terminal cytoplasmic tails of chloride/bicarbonate anion exchangers (AE) bind cytosolic carbonic anhydrase II (CAII) to form a bicarbonate transport metabolon, a membrane protein complex that accelerates transmembrane bicarbonate flux. To determine whether interaction with CAII affects the downregulated in adenoma (DRA) chloride/bicarbonate exchanger, anion exchange activity of DRA-transfe...
متن کاملThe extracellular component of a transport metabolon. Extracellular loop 4 of the human AE1 Cl-/HCO3- exchanger binds carbonic anhydrase IV.
Cytosolic carbonic anhydrase II (CAII) and the cytoplasmic C-terminal tails of chloride/bicarbonate anion exchange (AE) proteins associate to form a bicarbonate transport metabolon, which maximizes the bicarbonate transport rate. To determine whether cell surface-anchored carbonic anhydrase IV (CAIV) interacts with AE proteins to accelerate the bicarbonate transport rate, AE1-mediated bicarbona...
متن کاملThe Extracellular Component of a Transport Metabolon
Cytosolic carbonic anhydrase II (CAII) and the cytoplasmic C-terminal tails of chloride/bicarbonate anion exchange (AE) proteins associate to form a bicarbonate transport metabolon, which maximizes the bicarbonate transport rate. To determine whether cell surface-anchored carbonic anhydrase IV (CAIV) interacts with AE proteins to accelerate the bicarbonate transport rate, AE1-mediated bicarbona...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JOP : Journal of the pancreas
دوره 2 4 Suppl شماره
صفحات -
تاریخ انتشار 2001